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2. ~~~~~minar notions and t. he xi theorems -

Let (X1 : I > 1) be a sequence of iidrv ’s whose probability distribution

v0 on the Borel line (R,5) depends on a parameter 0 belonging to an

open subset IE~ of R. We suppose that the family of measures

(V
0 
: 0 E 0] Is dominated by Lebesgue measure p on (R,6) and write

f0
( )  dv

0
/dp for a version of the probability density function (pdf) and

F
0(•) for the corresponding distribution function (df). Let (R~~5~)1

j > 1 be copies of the Borel line and set (X*,A*) JI
~
’
~~ 

(R~,6.) with

P
0 denoting the produc t measure of the induced on A .  E

9 
will de—

note the expectation evaluated with respect to P
0
.

We envisage a clinical trial or life test experiment in which the X~

denote survival or response times and consequently they are nonnegative ano

the observable variables for a sample of xi > 1 specimens are the order

statistics X < . . .< X corresponding to X1,...,X By the con—
n, n,n fl

tinuity of F
0 

ties among the observables may be disregarded with probability

one.

For simplicity in script we denote by

Zk 
= X k, z (k) 

= (Z l,...,Zk) ,  1 � k � n; = = 0. (2.1)

The a—field generated by z~~ is written ~ and B is the trivial
n,k n,O

a—field . For each n > 1, let t be a stopping variable adapted to

k : 1 � k < n). We denote by P the projection of P0 
on

(‘r )

~ ). The family of probability measures {P 0 : 0 E ~i} is said

to be ~p as toticall n ormal (LAN) at 0
0 E ~ If for some positive

nonstochastic sequence : n > 1] we have for each u E R

dP
n ,0 +uç

1

= exp(u W~(00
) — -} u

2 
+ ~~(u ,00

)} (2.2)
n,(O

—

_________ ~~~~~ ~ -—~~
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P r o o f .  Let H be the  e m p i r i c a l  df of Y , - . . ,Y . Thenn 1 n
—1 —1

~H (n v )

~ g(Y ) ~ g(x)d!l (x) (4.1)
i=1 ~~ J o n

where 111(x) = inf {t E R : H (t) �x}. Therefore

tH ( x i)
n~~ ~ g(Y .) — 

J 

g (x ) d R ( x )  (4 .2 )
1=1 0

~~
i 
(~~l ) ( a )

= {f ~ g(x)dH (x) g(x)dU (x)} +

~I(
1 (a){J g(x)dH (x) — J g(x )dH (x )}

0 0

:y + y  , say .
n,1 n ,2

We f i rs t  consider the case ci < 1. Now if 1(A) is the ind ica tor  of A

xi 1 H ’(cz)

2 {n Z g ( Y . ) I ( Y . < 11 (:~) )  - f g(x)dli(x)}
1=1 1 1 

0

and thus by the strong 1a~ of large numbers (SLLN) we obtain immediate ly

Y -* 0. itt remains to show y -~ 0.n ,2 L~ n ,1 L
1

Let (f� ,F ,P) he the unde r ly ing probab ility space and r > 0 be arbitrary.

Define

C = fw c ~ : Y (w) — H~~ (a)j >
‘ n

E {(x ,w) c X S2 : Y > x � H 1(ci)}n ,1 n , T
xi

E 2 = {(x ,w) c R
+ x 0 Y < x < 1i 1

(ci)}xi , fl , T

-~~ - -- - --ii
a----” ~~~~~~~~~~~ 

—-
~~

-- — —
~~ 

-
_ —- -“
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Then C , E , E arc  measurab le  se ts  andn n ,l n ,2

E 
~ 

~g ( x )  I(x < — 1(x < II 1(~~) )  dU (x)

n ,1 n ,2

for each w c 0. H u t

~ ,l 1’C~~ E(J~~ g(x)II~~ d}1 (x)) � E(i~~ n ’ E Ig (Y .)J ) .

Since n ’v -
~ a in probability and H is continuous it follows that

E([~;) = P(G ) -
~~ 0 and since n E ~~ g(Y .)~ +~~Elg(Y,)~ by the SLLN we ge t

E(
~
Y
~~i~

l
c 

) -
~~ 0. (4 .3)

Now

+ say ,  where C is the

comp lement of C in 0.

For (x ,w) E E~~ 1~ w we have H~~~(a) � x <
~~~~~f l T  ~ H 1(a)  + c

and for (x,w) c E w c C , H (ci )  > x � Y > H (cc ) — c .  T h e r e f o r e
n , n n ,T

n

H ’(a)+c H 1(a)+c
� J J g ( x ) ~~dFI (x)  

~ L J g ( x~~~d H ( x )

H ‘(CL)

and similarly Y~~~4 
� J g(x)J dH (x) 

~~ 
f g(x)~~dH(x) .

Since E~ g ( Y ) I  < and c > 0 is arbi t rary we have shown E ( j y  ~ j i  ) -
~ 0

C
and so 

~n ,1 ~L 
0. This establishes the  lemma for the  case c~ < 1.

For ci = 1 we interpret 11 1(a) = +~~~ and so must show

Co

—l ~ I
n Z g (Y .)  

L J 
g ( x ) d f l ( x )  = E g ( Y ) .

11  1
0

______________
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We proceed as In (4.2). The proof of 
~ 

~~ 

-

~~~ 

0 is essentially the same
xi ,.

and f o r  y we wr i t e
xi , 1

- + 

y
n ,i 

= 

J~~
( x ) {I~ - l }dH~~(x) 

-where F. = {(x ,w) c R x 0 : V (w) > x } .  Also define
xi

n

K
11 
={w c 0 n~~T~ (w) — i~ > C). Then as before 

~n,1
’K ~L 

0. For
n 1

(x,w) € E , w € K we have x � Y - So
xi xi n ,In(l—c)j.

lY fl ,111 _ ~ ~g(x)jt(x � Y I ( 1 )~ )dH ( X ) (4.4)

(Co 11n (l—c)1
< 

J 
J g ( x ) j dII (x )  — xi E J g ( Y  . ) j .
0 i=l

Therefore from the first part and the SLLN the r ig ht hand side of (4.4) con-

verges in L
1 

to f ~~~g ( x ) ~~d I I ( x )  - g ( x ) I d H ( x ) , wh ich can be made

arbitrarily small by choosing c appropriately . This completes the proof.

The next result is based on a theorem by Sen (1961). We assume that H

admits a density (with respect to Lebesgue measure ji ~ h on and li(0) > 0.

Lemma 4 . 2 .  Let g ÷ R be right continuous in a neighbo rhood of the

ori gin and have a right derivative g’(O) there . Suppose E~ g(Y)~~ < Co

for some a > 0. Then

u r n  E~ flaI8(Y
5 

) - g(0)~~~} = 1(a +

x

Proof. E{najg(Y 1) 
- g(o)~

a) = na+lf Ig(x) - g( O)~~~a (l_ f l (~~ ) )~~~~ ldH(x )

+ n~~ 1f ~g(x) 
- g(0)~

a(1 - H ( x ) ) ~~~ dH(x)

n,0

:6  + 6  say .n . l  n .~ 
-

L 
_ _ _ _ _ _ _ _ _ _ _ _ _
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The point x € (0 ,co) Is chosen such that H(x ~
) cn~~ where c > 0 and

n, xi ,

0< 6 < 1. Now (1 — 11(x)) is nonincreasing and so

6n,2 
~ ~a+l(, - H(x~~ 0

)) ’~~’f Jg (x) — g(~)~ ddH(~)

n,0

� ~a+l(1 - H(x~~0))~~
1
Ej g(Y1) 

- g(0)~ a

But n~~
-
~(1 — H(x )) xi 

~~ 

a+l (
l—6) -~~ 0 as n -- . So 6 -~ 0 and

n,o xi ,

we are left with 6n l • Now 6n l  
na+uJ ~g(H~

1(x)) — g(0)~
a(1 — x)~~

1
dx.

We can find c c (0,cn
6] such that for sufficiently large xi

6n,u 
= {Jg(H~~(c)) 

- g(O)j /c }
a
n~~1f 

- 

X (l - x)~~
1
dx.

it is shown in Sen (1961) that n
a
~~

f 
x ( i  — x)~ 

‘dx -‘- [(a + 1) as xi -+ ~~~.

Also

lirn {jg(H~~~(c ))  - g(O)~~/c} lim {~ g(H 1(c ))  - g(0)(/H~~(c~)}
n-~~ 

n-*co

• linl {H~~ (c )fc 
} =

and thus the conclusion of the lemma follows.

The following lemma is central to the development of our main theorems.

• Lemma 4.3. annum tions (Al) - (A3) ~~~~~~~~~~ ~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~L~E2 {S
fl ,k : 1 � k � n} ~~~

which n ’v -* xi € (0,1] i n P
0 — r~~~~~~ iii~Z,

n,v L
1 

cc

Proof. In the sequel we suppress 0
0 

throughout. From (2.4) and (2.13)
‘~~ *2we have V 

• 
= — - where for each 1 < i < xi ,i—i n,i

— ~~~~~~~~~~ -~~~~-~~~~~~~~~• •
~~~~— - - - - -

~~~~
-—

~~~~~~~ 
-=—

~ 
-
~~~~~ —-
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• = ~
2(z.1 ) + 

~o + + 82 + 83 (4.5)

and

8o E ((~
2(z1) 

-

a E ((xi - i + l)2(à (z1) 
- 

~~ 
(zi_,))

2
lB
~,1_ i

)

82 
a 2E ((n — I + l )(~ (Z1)~ (Z1) 

— ~ (Z11 )G (Zi l ))IB
fl ,j_,)

83 
a —2à (z11)E ( (xi — i + l)(~ (z1) 

— 
~

- (Zi..i))IBn i_i)•

Now (A1)and(A2) ensure the continuity of ~ and ~ and the existence of

their derivatives at Z~~1. Also f- ~~ (x) = —r (x)~ (x). Furthermore if

for each xi � i � i, Y1~ •••~Y ~~~~~~ are iidrv ’s with df given by

~ (x) (F (x) — F (z.1 ))/(l — F (Z , 1 )), if x Z
11 

and zero otherwise,

then the conditional distribution of Z. given B is the same as that
i n,i—l

of min(Y1,... “~n—i+i~ 
Hence applying Lemma 4.2 repeatedly we find that for

each n � i � 1 
~~~~

, 
~~~~.

‘ ~~~~~ ‘ 
8~ are respectively convergent equivalent a.s. (P9 

)

to 0, 2
2(Z.1 ), -2~

2 ( Z . 1 )  + 2{r~~(x)~ (x) F ~ (x)}~~~ and 
0

—2{r (x)G (x) — r (x)} 
= 

- Hence ~ ~~. is convergent equivalent a.s.
x Z .1  O~~ V

to 0 and we get ~~~~~~ convergent equivalent a.s. to

An application of Lemma 4.1 yields the desired result.

We shall now turn to the analysis of the statistics A 
- 
(u) with u

xi ,

fixed. in the sequel 80 will be held fixed and therefore we suppress

e
0 

in P0 and E0 . This convention will also apply to the ancillary
0 0

entities to be introduced below. Convergences are to be interpreted with

‘espec t to P8 -

0
Define {n - 1 < i < n 3  by

n ,1 — —

m l n
fl~~

(u) = ( g ~ 1 (~~)fg j(~Ø))~ 
— 1, (4.6)

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— — —— ——--- -• — ------ - --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-•

14

where g 1
( O)  a g 1(Z1,0) = q~(ZjIB~~j~~) and 0 Is given by (2.5).

Denote differentiation wIth respec t to E~ by a prime . If denotes

the L2—norm with 
respect to the produc t of Lebesgue measure p and count-

ing measure on (1,.. .~~-r~~(w) } then

I

- g ’ 
i(o0)~

2 
= 

~ J (g~~1(z,0) 
- g’ 1

(z,0
0
))2dL2 (z)

sup 
~ I (g~~1(z,0) 

— g t
1
(z,00))

2dp(z),
i0— 00L~Ju !n 1=1 Z11

for each u and hence (A6) entails

u r n  E(n~~ sup ~~g’ ~(O) — g
’ .(8 o) (~

2 } = 0. (4.7)
rl-~ IO— 00L$JuIn 

fl~ fl,].

We shall utilize the following lemma iii the proof of Theorem 3.1.

Lemma 4 .4 .  For each u E R

-r
ii i —½

~~~ 2
~ (n 

~
(u) — L ~n ~ ~

) ) -
~~ 0 (4.8)

1=1 2 fl,

and

E( .~~ n~~1
(u)) ~ ~2 

~ (4.9)

Proof:  Since -r is adapted to {S~~j  : 1 < i < n} the expectation in

(4.8) may be written

• E(~~ E{(n
~~i 

- 
~ un

~~~~,i
)2(B

~ ,i_i
}) (4.10)

~nd the sum of the conditional expectations in (4.10) can be re—expressed

as II(n~ 1 — -~~ un~~~~~j)8~ ,1Ii
2. Hence to prove (4.8) we must show

- 
E(I~(n~~ — -

~~ un ’
~

f
~ 1)g 

~It
2) -~ 0 . (4.11)

Observe that for each i, 1 < i < n

_ __ • -

L • • ~~ _ _ _ _ _ _ _ __ _ _ _
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8 Is

(g
1
(0) - g 1

(0
0

) )  - un~~ g’ 1 J (g’ . ( O )  - g’
1(00
))dp (0). (4.12)

But g~~1/g~~1 
= 

~ ~n ,i 
acid thus (4.12) leads to

-r 0

- 
~~
- Un ~~1)

~~ 1l~
2 

= 

j  ~f ( g ’ j ( t) - g’ 1(00
) )d~~(0))dii(z).

1—1 0 
(4.13)

An app lication of the Cauchy—Schwarz inequality and Fubinl’s theorem in

turn on the right hand side of (4.13) wIll yield after some routine manipula—

tions

~~~n,i 
- 4 ~~~~~~~~~ ~ u

2

~~ 8 0 ~~~~ u x i~~ 
Hg~ ,1

(o) -

• (4.14)

and so (4.11) is a consequence of (4.7) and (4.14). Observe that in our

no tat ion

I

= 

i~1 
E(n~ ,1!B~,1_1) (4.15)

and

It 
4 

un~~~ ~~~ 
= ~ u~n~~ 

~ 

E(
~~~i~

8
n,i_l) 

= 
~~ 

u
2n ’V

~~~~
.(4.l6)

By Lemma 4.3 fl 1V~ ~ 
in L

1(P). Therefore from (4.15), (4.16) and

the Inequality

• Ili~n,j
Bn,jlt — l~ 4 

~~~~~~~~~~~~~~~~ < 

~~n,i 
— 

4 
un
~~~~~~

)g
~~jl~

2

(4.9) follows from (4.8). The proof of the lemma is now complete.

Proof of Theorem 3.1. From our definition of A and n - we can
• n,I n,1

xi
write by Taylor’s theorem

I I I I

log An t  2 

~ 

log(l + n~,1) 
= 2 

~n,i 
— 

~~~ 

n~~1 + 

~~ 

A
~ i Jn~ i I 3,

(4.17)

*

1

• - ,—-• - -• - - • — --—-- - -——• ,-— • -— — - -  .• - - - •---‘---~~~~~~~~~~

_ _ _ _  _ _ _ _ _ _  -—- ~~~~~~~~~ -~~~~~~~~~~~~~~ —~~~~~~
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where A~ ~ 
satisfy J A ~i < 1 and max lr~ ~~ ~ c , with c > 0

1<i~ -r ~
arbitrary. We rewrite (4.17) in the form 

-

log A~~1 ‘rn,l + ‘rn,2 + 1n,3 + ‘f~~4 
(4.18)

where
I I

2(~~ ~~~~~ 
— .

~
. 

~~~~~ 
~~ 

+ -
~~ u2J~~, (4.19)

‘rn,2 
= —{ 

~ 
— 

~ u2J } , (4.20)
i—i

I

‘rn 3  
~~~~~ ~~~~~~~ 

(4.21)

y = {un~~J w — 
~~
‘ u~

j }. (4.22)n,4 n,t n,t 2 xi
xi n

Hence from Lemma 4.3, (3.2) will be established once we show ‘m l  ~ 0 fo r

i 1,2,3 and L ( W  
1 

-, N(O,i). We begin with the proof of the
0

latter.

*In view of (A3) and (A5) we have E(~ 41 5  ~~ = 0 for each I and
xi , xi ,

so with E
~n k  given by (2.9), 

~~~~k’8 k : 1 ~ k < x i )  is a zero—mean

martingale under P. From Lemma 4.3 and (A4)

•1

~ 

E(
~~

2
jI6~~i i

) = ( x i  J
~~1

)
~~

(n ’v
~~1
) ~ 1 (4.23)

Hence by Durrett and Resnick (1978) Theorem 2.3, we will have W~~1 ~~
- 
~4(O,1)

once we establish

I

~~~~~~ 

~ 
E(~~~~~ ‘(t~~~I > c J

~~~~~~
) lS  

~~~~ 
0 (4.24)

for arbitrary c > 0. Now the entity in (4.24) Is dominated by

(~-lJ ) -(l+6/2){~-l 

:~1 
E(R

~ ,i l
2
~
6
IBn ,i_1) }(n~)

6
, (4 25)
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where the 6 comes from (A3). Therefore in view 0 (A4) and Lemma 4.3,

(4.24) will be established once we show

I

— —1 ~ * 2+6lim n E( ~ I E~ ) < (4.26)
fl -I-Co 1=1

*With our definition of 
~ 

in (2.12) we have

< 2’~~
6

{J ~~(Z
1) t

2
~~

6 + (n-i+l)(~~(Z
1

) - à (Z
1_, ) ) t

2
~~~~~} (4.27)

Now summoning Lemma 4.2 and following the argument in Lemma 4.3 we note

that for n > I > 1

E{kn—i+1)(G(Z
1
) —

is convergent equivalent a.s. to r(3+6)L~(zj,)l
2+6 . Therefore for

arbitrary c > 0

fl
_l
E(~~ J (n-i+l)(à(Z1

) - ~(z:i ))I
2+6
)

• xi 
1E( 

~ 
{r(3÷6)j~ (z~~,)t ~~~~} + cn)

1=1

< r(3÷6)Eli~(x)l
2
~
6 

+ C , (4.28)

and thus from (4.27), (4.28) and (A3), (4.26) entails.

We now consider ‘rn,2 
and ‘r~ ,3• 

That 
~~~~ ~ 

0 for I = 2 ,3 will

follow from

max 
~ 

0 (4.29)
1<i<t

—— — n
and

In
-
~~ 

u
2
J (4.30)

i=l ‘ 
cc

To show this let r > 0 and i) ~ 0 be arbitrary. From Durrett and

R:~sn fck (197~) we -ive the inrcquali t y

L ___ _ 
_ _ _ _

~~~~~~~~~~~~~~
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1

P( max In~~1l > t) < n + P (~~ kn,iI > cIS~,1_1
) > n). (4.31)

But P(tm i~~ jt > cIB
~,i_i

) 
~~ 

P (In~ ,~ 
— 4 un~~~~~I >

+ P(R~~1l >

< 4c~~E ( ( n~~~ — 4 un 2
~~~j)

2
I8~~j...1

)

2— 2 —1 *2 * —1 ._
~~+ u c n E(~~~1I(R~~1I > l u l cxi 
~
15n,i—1~

(4.32)

Now (4.24) holds. So from Lemma 4.3 we get

I

n
_i j1 E(

~~
2
jt (l~~~i I > Iu I ’cn ’

~)I8~~1.,) ~ 0. (4.33)

Furthermore from (4.8) 

~ 

E((n~~1 
— 4 un~~~ ,1)

2
IB~,1_,) ~ 0 and there-

fore (4.29) obtains. Again with c ,ri > 0 arbitrary ,

I I I

— ~ u2n~~ 
~ 

> c)  < c 1E (~~ ~~~ — ~~ u
2
n~~~

*2
jI)

4 

c~~n E(~~ (n~ ,1 
- 

4 

un~~~~~~)
2
) + c

1
~~

1(E (~~ ~~~~ + ~ u2 n~~~J~~~1
) ) .

(4.34)

Select n = {E(~~ 
~~n,i 

- 4 un~~~~~~)
2)}~~ and apply Lemma 4.3 and 4.4.

We get from (4.34)

I I
• 

— -
~~ 

~~~~ 

~ 
~~~ ~~ 0 , (4.35)

and then using McLeish (1974) (Theorem 3.6 and Corollary 3.8) we get

n 
~ ~n i 

j
0 

and then (4.30) follows from (4.35) .
1=1 ‘

It remains to show ‘rn,1 ~ 0. Note that (4.34) and (4.35) also imply

• 
~ E(r i~ 5 ) -

~ ~ u
2
J (4.36)

~~~~ 
n ,I n,i—l 4 cc

I-- - ——----- --.—--=-- — —.— — 
~~~~~~~~~~

L —~~~ -~~~~~~ :~~~ ---- ~~- --—-~~ - -- -•- - - -- --- — - ~- ~~~~~~- —--- ~--- —-~~
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and therefore directly from (4.6)

I

~~~ 
E( n ~~, 1I B~ , 1 1

) 
~~ 

- -

~~ 
u2J~,. (4.37)

• For arbitrary i 0

I -t

— 4 un~~ 
~~ 

+ -
~~ 

u2J~ I >

~ P(J 
~ 

> c/ 2)  + P(~~~ E ( n
~ ,j

t8
~ ,j_i

) + -
~~ 

u2J
~1) (4.38)

1where ~~ — — — un ~ 
— E (~ ~6 ), 1 < I < n.n,I n ,I 2 n,i n,i n,1—1 — —

~iow 
{
~ ,8 ; 1 < I < n) is a zero—mean martingale. So we havexi , i n,i — —

1 1

and 

“

~
:
~

1 ~~ j l > ~/2)  < 4c 2E(~~ ~;~~~ j )
2 

(4.39)

~ i)~ 
< E( ~ 2

1=1 1=1
I

= E (~~ E(
~~ ,1t5~,1_i

) )  

*

~ ~~i~ i ~~
n,i 

— 4 Un 
n ,i~

2

~ 
(4 .4 0)

That 
~~~~ ~ 

0 now follows from (4.38), (4.39), (4.40) and (4.8). The

proof of Theorem 3.1 is now complete.

Proof of Theorem 3.2. Observe that (3.3) is an immediate consequence of

Theorem 3.1. We also note that  th is  enta i ls

I

, . 
L(log A (u)IP ) N ( -~~

2 ,a2 ) (4.41)
‘

_t
n ~

•0

where ~
2 u 2J and P as before is the restriction of P to

a n,8~

- Hence by LeCam ’s First Lemma (see H~jek and Sidak (1967)) it follows

t h a t  the  f ami l y of p r o b a b i l i ty  measures (P 0 n ‘ 1) is contiguous to

- - : n > 1 } and so we have for each u ( R

C o . .— - -  
- -_ _  

—
~~~~~~~~~~~

- -~~~~~~~~~~~~ - - .~~~~~~~~~~~~ I



20

L(log A (u)IP ) -* N(~o
2
,o
2
) (4.42)fl ,I n,en n

from which (3.4) follows.

Proof of Theorem 3.3. Since

f t
A ( 0) = 

~ J 

T (x~~~) p (z~~~~n)dp ( 
(k)

~ ),
k=l

E 
n,k —

n,k
we obtain

x i i
dO A (O) Co 

~ J T ~~~~~~ k~~ 
9 
~~ ,n)d~~~( z )  (4.43)

k=1 n,k n,
E
n, k

E(T ~ ).
0 fl ,I fl ,In n

We have already noted that  our assumptions imp ly E
0
(~ ) = 0. Thus (4.43 )

n
can be rewritten

E0(~ (T — A ( 0 ) ) )  = -p-— A (0) a A ’ ( o )  (4.44)
d O n  nn,T

and an application of the Cauchy—Schwarz inequality yields ( 3 . 5) . When equality

obtains in (3.5) there is a constant a (0) such thatn

T — A (0) = a (O )~ . (4.45)n,T xi n tl ,txi xi

Hence a2(O) = (A ’(O))2/J (0))2. From Lemma 4.3 and the fact thatn
n

- L (W J P 0 
) -* N(0,l) the conclusion of the theorem follows from
0

(4 .45) .

Proof of Theorem 3.4. Suppose the sequence {T } satisfies the conditionn, I

~~~P0
] -

~ N(O,v
2(00)), (4.46)L[n1(T — 0

n

where v2 (O ) > 0, and in addition the restrictionn O

u r n  Inf P 
— ‘ IT •( 00 + n 2 ] � ½. (4.47)

~ fl , I00+0 xi

_ _ _ _ _  — ---
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We shall show v~ (00
) ? J

_l
(e)

Let c > 0 be arbitrary . Set 0~ 0 0 + ~~~~~~2 and define the sets

C = > c i ,  D = UT � 0 ] , n ~ 1 ~‘here A = log /. (1). Then
fl fl , t fl fl ,t Li fl ,t n,t

0 xi xi xi

in view of ( 4 . 4 7 ) ,

u r n  sup P8 ( D )  > ½. (4.48)

Also

P0 (c~) = 1 — P
0

[( A ~~ 1 
— ½0 2 )/ o  � (c — ½0

2
)fo]

where ~
2 

= j (o). Hence from Theorem 3.2 we get

u r n  P Or1
(C

n
) Co 1 — 

~((c — ½0

2)/o) (4.49)

where ~ is the standard Gaussian distribution function. Hence selecting

c > ~~~~~ (4.43) and (4.49) lead to the inequalities

u r n  sup P
0
(D) � ½ > lint P

0
(C). (4.50)

Thus for  i n f i nit e l y many xi ,

- P
0

( D )  > P
0
(C). (4.51)

By the Neyman—Pearson Lemma the test based on A 
I 

is the most powerful
‘ xi

test of its size among all tests whose stopping variable is So we have

• from (4.51)

P
0 

(D ) > P
8 (C 

) (4.52)
O n

for infinitely many x i .  But

P
0
(D~) = 1 - P0 [n½(T - 0

0
)/v (es ) < v~~(00

) ]

and

— — 
•

~ ~

, — — —

_ _ _ _
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P (C ) Co - P 1 (A + h jo
2

) / c~ (
~ + ½u

2
)/o1.

0 n 0 n , i0 0 n

Hence (4.51) imp lies  ~
((

~
- + ~~a

2
) / i )  

~ ~~~~~~ 
in view of (4.46) and

Theo rem 3.2 .  Since ~ > ~~2 but is otherwise arbitrary we get the result

v2(O o) 
—2 

=

Now suppose (4.46) holds with 0
0 

replaced by 0 , for  any 0 ~ 0. The

function given by g (o) = lP 0
IT

~~~1 
< 0]  — ½ 1 , o € o and zero otherwise , is

Borel—measurable (with respect to the Borel subsets of 0) and our assumption

implies u r n  P
0

(T 
~ 

< 0) Co 
½, for all 0 € 0. Hence

‘ fl

u r n  g (0)  = 0 and 0 < g~~(O) � ½ , for  each 0 € 0
n-’-0,

Therefore since

+ n~~ )d~~(0) Co Jg (o) —~-— exp(-½(0 - n~~~)
2 ) d p ( O ) ,

the dominated convergence theorem yields

lim J g (O + n ) d~ (0) = 0.

R

It  follows tha t g (0 + n~~) 
-
~ 0 a.e. (4~) along some subsequence 

~~~~~~~~

But the measure in 
V
(R~~) induced by ~ is equivalent  to Lebesgue measure p .

So for almost all 0 c 0 (respect to p) we have lirn inf g ( O  + n ½) = 0

and thus a lso lirn inf P 
½
[T
n I 

< 0 + n 2] � ½, for almost all 0 c 0,
n-’-0, 0-4-n xi

and so the conclusion v2 (O) � f 1(O) can be made for almost all 0 c 0.

The stated form of Theorem 3.4 will now follow with only minor modifications.

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. Conclud ~~~~j~ marks -

The restriction to nonnegative random variables made at the beginning of

this paper is unnecessary and our results will continue to hold with minor

modifications in more general cases. With the appropriate changes for

instance our results will hold truC for distributions having a finite right

end—point.

The particular choice of local coordinates 0 = 0 + un~~ of (2.5) in

the definition of the PCLRS {A n k } In (2.6) was a consequence of the con-

vergence n 1J -* J deduced from Lemma 4.3 and (A4). It was at this
n,I CX

stage where the consideration of the observablcs (Z1} as order statistics

came into play .

The proof of the main result Theorem 3.1 reveals two basic features.

Firstly we derive the limiting normal distribution for the sequence of

derivatives of the log—likelihood 
~~~~~~~~ 

: 1 < k < n} and then analyze

terms of a par ticular Tay lor expansion of the log—likelihood ratios

(k) (k) . -(Z ,n)/p0 
(Z ,n) : 1 < k < n}. In this expansion the weak continuity

n 0
cond i t i on  (A6) makes third order terms negligible in probability. The basic

tools utilized in the derivation of the limiting distribution of t%~ of
fl , T

(2.14) were the martingale character of f
~ n,k

(0
o
), 8n,k 

: 1 ~ k < ~
} which

is a consequence of (AS), the existence of the limit for stopped suitably

normalized conditional variances V , as proved in Lemma 4 3  and the
n , I

n
(conditional) Lindeberg condition (4.24) which we derived using (A3).

With these remarks in mind we outline below a set of conditions under

which the local asymptotic normality can be obtained for likelihood ratio

• statistics where the underl ying observations follow a series scheme .

Suppose IXO k  : 1 < k — n; n > 1} is a double sequence of random

variables on a probability space (X,A ,P1~) where 0 E L~ and ~ is an open

I
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subset of R. Let X (X ,. . .,X ), 1 < k < n and B denote
~n ,k n ,1 n,k — — n ,h

the c—field generated by x 
k~ 

The projection of P 0 to B is de-

noted and we suppose t he r e  is some a—finite measure ~~~on (X,A)

such that is absolutely continuous with respect to the product

= ~‘ x p x~~.x p on the cartesian product (X ,A ) .  As be fo re , for

each n > 1 let t be a stopping variable adapted to 1 ~ k ~ n}

and let P denote t ite restr ict ion of P to 5 Co a ( X  ).
n ,O 0 fl ,I ~~~~

If 
~O~~n,k’~~ 

is the pdf of 
~n,k 

and q0
(x~~~ !B~~~~1) the con—

ditional pdf of X given B we haven,k n,k—1

n) Co J~ q8(X .I6 
~~~~~~~ 

1 k n. (5.1)

Let 00 be a f i xed point in ~~ . We assume

(Bl) For all 0 in some nei ghborhood N of 8 and all x0 0 0 ~n,k

> O~ 1 ~ k ~ n; 0 -‘- po
(
~~ ,k

;n) is continuously differentiable

on N for p —almost all xk

(B2) For each xi > 1 and all k, 8 
~ 
I
~ 

q
3
(x~6~~~~1

)dIi Is differentiable

under the  integral sign at O
~~
.

We may now define for 1 < k <

~n ,k 
= [j -~

- log p O (
~ fl, k ;n) ] O..B (5 .2)

~n,k 
= [-

~
-
~~ 

log q
0

(X
fl~~ (B fl~~_1)10 0  

. (5.3)

We also assume

*2— (B3) For each n > 1 and all k , 0 < E (
~ ) < Co • Let us then define

—

V
f l k  

= 

i=l 
E
0 

(
~~

2
iI6

~~~_ i )’ 1 ~ k ~ n (5 .4)

L

and suppose 

-~~~ ---~• - -- ~~~~-- --- ~~~~~~~~ - - - ~~ - -- - -~~~--~~~~~~~~~~~ -•~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(B4) There exists a sequence of positive constants n > 1) such

t ha t  V / ~‘ -‘- 1 in I’ —probabilit y.n ,T fl 0
xi 0

(B5) For all c > 0

I

i=l 
E0 ~~~~~~~~~~~ > 

~ Y~)l6~~~~~) 0

in P
6 

—probability.
0

(B6) For each u ~ R

I

u r n  E
0 

{ sup ~~ ~ r~~ 1 

~ f dp[~~ {q0(x(6 . 1
)3 ½

n-~~ 0 0—0 j<~ uj~’ 1=1 X0-— n

- -
~
-
~--{q0 

(X IS  . l )) 2 ] 2
} Co

where ~~~ (q
0

(x~8~~ j1 ) ) ½ 
= (~~{q0(xjB~~11

) } ½)
0 0

.

In view of our assumptions we now define

• 
/i
f l k~~

1) = p O n,k ’~~~
’
~ 0 ~

S0,k ’ -t
~~’ 

1 ~ k ~ xi (5.5)
xi 0

where 0 = 0 + u~ 
2 
E ~, u E K and setn 0 xi

~n ,t~~~
t) Co 

~n k ~°~~’ 
if Co k (5.6)

Hence paralleling Theorem 3.1 we state

Theorem 5.1. With the definitions (5. )—(5.6) and under conditions

Bl—B6 , for each u E R

~~~~~~ A (u) = exp{u~\ — 
] ~,2 + ~“ 2 n

xi

wher e and L ( ’~~!P 0 )  -* W ( 0 , l) and ~~ (u) - -‘- 0 in P
0

—

probability for each u E R.  We nay t h e r e f o r e  say the f ami ly  of probabil i ty

n~ asur€- s (P E~ is LAN at

- ---- -_ - -
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